Comparison of satellite and ground-based hyperspectral data for the red edge position estimation
Heading:
1Lyalko, VI, 2Shportjuk, ZM, 1Sakhatsky, AI, 1Sibirtseva, ОN, 3Dugin, SS, 3Grigorenko, VV 1State institution «Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine», Kyiv, Ukraine 2State institution «Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine», Kyiv 3State institution «Scientific Centre for Aerospace Research of the Earth of the Institute of Geological Science of the National Academy of Sciences of Ukraine», Kyiv, Ukraine |
Kosm. nauka tehnol. 2010, 16 ;(3):39-45 |
https://doi.org/10.15407/knit2010.03.039 |
Publication Language: Ukrainian |
Abstract: We compared hyperspectral data from EO-1 Hyperion and spectrometric data from the spectrometer ASD FieldSpec 3F to evaluate the Red Edge Position of reflectance spectra for different land cover types within the test area of the Mariinskyi park in Kyiv. The satellite EO-1 Hyperion image made on 14 September 2002 and ground-based ASD FieldSpec 3F measurements performed on 15 April 2009 and 16 September 2009 were used. A relationship between the REP value and calculation method and image processing level is deduced. The four-point linear interpolation method for REP calculation from the atmospheric-corrected satellite data gives the results which are closest to the data calculated with the use of ground-based measurements of grass canopy.
|
Keywords: hyperspectral data, red edge position estimation, spectrometer |
References:
1. Lyalko V. I., Shportyuk Z. M., Sakhatskyi O. I., Sybirtseva O. M. Land cover classification in Ukrainian Carpathians using the MERIS Terrestrial Chlorophyl Index and red edge position from ENVISAT MERIS data. Kosm. nauka tehnol., 12 (5-6), 10—14 (2006) [in Ukrainian].
2. Lyalko V. I., Shportyuk Z. M., Sakhatskyi O. I., Sybirtseva O. M. The use of red edge indices and water indices from hyperspectral data from EO-1 Hyperion for land cover classification. Kosm. nauka tehnol., 14 (3), 55—68 (2008) [in Ukrainian].
https://doi.org/10.15407/knit2008.03.055
https://doi.org/10.15407/knit2008.03.055
3. Lyalko V. I., Sakhatsky O. I., Shportyuk Z. M., Sibirtseva O. M. Correction of atmospheric influence on hyperspectral EO 1 Hyperion data for the red edge position estimation. Kosm. nauka tehnol., 15 (3), 32—41 (2009) [in Ukrainian].
https://doi.org/10.15407/knit2009.03.032
https://doi.org/10.15407/knit2009.03.032
4. Sakhatsky O. I., Sibirtseva O. M., Shportyuk Z. M. Formulation on the basis of roses in the vegetative indices of the wormwood region for giving ENVISAT MERIS. In: 6th Ukrainian Conference on Space Research: Abstracts, September 3-10, 2006, P. 124 (NCUIKS, Evpatoria, 2006) [in Russian].
5. Baret F., Jacquemoud S., Guyot G., Leprieur C. Modeled analysis of the biophysical nature of spectral shifts and comparison with information content of broad bands. Remote Sens. Environ., 41 (2-3), 133— 142 (1992).
https://doi.org/10.1016/0034-4257(92)90073-S
https://doi.org/10.1016/0034-4257(92)90073-S
6. Buschmann C. Fernerkundung von Pflanzen. Naturwissenschaften, 80, 439—453 (1993).
https://doi.org/10.1007/BF01136034
https://doi.org/10.1007/BF01136034
7. Buschmann C., Nagel E. Reflexionsspektren von Blättern und Nadeln als Basis für die physiologische Beurteilung von Baumschaden. PEF-Report Nr. 90, 165 p. (Kernforschungszentrum, Karlsruhe, 1992).
8. Buschmann C., Nagel E. In vivo spectroscopy and internal optics of leaves as basis for the remote sensing of vegetation. Int. J. Remote Sens., 14, 711—722 (1993).
https://doi.org/10.1080/01431169308904370
https://doi.org/10.1080/01431169308904370
9. Collins W., Chang S.-H., Raines G., et al. Airborne bio-geophysical mapping of hidden mineral deposits. Economic Geol., 4 (78), 737—749 (1983).
https://doi.org/10.2113/gsecongeo.78.4.737
https://doi.org/10.2113/gsecongeo.78.4.737
10. Horler D.N.H., Dockray M., Barber J. The red edge of plant leaf reflectance. Int. J. Remote Sens., 4, 273—288 (1983).
https://doi.org/10.1080/01431168308948546
https://doi.org/10.1080/01431168308948546
11. Pu R., Gong P., Biging G., Larrieu M. R. Extraction of red edge optical parameters from Hyperion data for estimation of forest leaf area index. IEEE Transactions on Geoscience and Remote Sensing, 41 (4), 916—921 (2003).
https://doi.org/10.1109/TGRS.2003.813555
https://doi.org/10.1109/TGRS.2003.813555
12. Rock B. N., Hoshizaki T., Miller J. R. Comparison of the in situ and airborne spectral measurements of the blue shift associated with forest decline. Remote Sens. Environ., 24, 109—127 (1988).
https://doi.org/10.1016/0034-4257(88)90008-9
https://doi.org/10.1016/0034-4257(88)90008-9
13. Soudani K., Francois C., le Maire G., et al. Comparative analysis of IKONOS, SPOT, and ETM+ data for leaf area index estimation in temperate coniferous and deciduous forest stands. Remote Sens. Environ., 102, 161—175 (2006).
https://doi.org/10.1016/j.rse.2006.02.004
https://doi.org/10.1016/j.rse.2006.02.004
14. Zarco-Tejada P. J., Miller J. R. Land cover mapping of BOREAS using red edge spectral parameters from CASI imagery. J. Geophys. Res., 104D (22), 27921—27933 (1999).
https://doi.org/10.1029/1999JD900161