Wave experiment onboard the microsatellite «Chibis-M»

1Korepanov, V, Marusrnkov, A, 1Belyayev, S, 2Klimov, S, 2Zelenyi, L, 2Novikov, D, 3Ferencz, Cs., 3Lichtenberger, J, 4Bodnar, L
1Lviv Centre of the Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Lviv, Ukraine
2Space Research Institute of the Russian AS, Moscow, Russia
3University. Loránd Etvosha city. Budapest, Hungary
4Enterprise «BL-Electronics Kft.», Sholmar, Hungary
Kosm. nauka tehnol. 2010, 16 ;(3):59-67
https://doi.org/10.15407/knit2010.03.059
Publication Language: Ukrainian
Abstract: 
One of the recent challenges of space physics is the study of processes taking place during lightning discharges. A dedicated microsatellite named Chibis-M («lapwing» in English) is under preparation for launch in 2010. It contains two space instrumentation units, namely, «Thunderstorm» and «Wave Package». A special efficiency of this project is expected because not only direct observations of lightnings, but also the synchronized study of wave processes caused by lightnings will be carried out both onboard the satellite and at ground support stations. This will give unprecedented opportunity for monitoring the development of the lightning mechanism from the lightning generation till relaxation in the form of electromagnetic waves. Measurements of electric and magnetic fields and electric current density will be performed within the framework of the wave experiment onboard Chibis-M. Special attention focusses on the ULF ‒ VLF frequency range. The waves of this range play the major role in the interactions of the «magnetosphere ‒ ionosphere ‒ atmosphere ‒ lithos-phere» system and their study is essential for the understanding of these interactions. The project scientific goals and Wave Package onboard instrumentation are described.
Keywords: lightning, space physics, wave experiment
References: 
1. Vaisberg O. L., Klimov S. I., Korepanov V. E. Measurement of current density at a shock wave by a slit-type Langmuir probe. Kosmicheskie Issledovaniia, 27 (3), 623—627 (1989) [in Russian].
2. Gnevyshev M. N., Ol' A. I. (Eds) Effect of Solar Activity on the Earth's Atmosphere and Biosphere, 259 p. (Nauka, Moscow, 1971) [in Russian].
3. Korepanov V. Ye., Kriuchkov Ye. I., Lizunov G. V., et al. The first results of the Variant experiment onboard the Sich-1M satellite. Kosm. nauka tehnol., 13 (4), 10—17 (2007) [in Ukrainian].
https://doi.org/10.15407/knit2007.04.010
4. Romanov S. A., Klimov S. I., Mironenko P. A. Spatial characteristics and dispersion relations of ELF emissions in the earth's bow shock region according to Prognoz-10 measurements. Kosmicheskie Issledovaniia, 28 (6), 903—918 (1990) [in Russian].
5. Angarov V. N., Gotlib V. M., Klimov S. I., et al. Investigation of atmospheric lightning discharges on the microsatellite «Chibis-M». AGU Chapman Conference on the Effects of Thunderstorms and Lightning in the Upper Atmosphere. Penn State University, State College, PA, USA, 10—14, May 2009, P. 49 (2009).
6. Bering E. A., Kelley M. C., Mozer F. S. Split Langmuir probe measurements of current density and electric fields in an aurora. J. Gephys. Res., 78 (13), 2202—2213 (1973).
https://doi.org/10.1029/JA078i013p02201
7. Bognár P., Ferencz Cs., Tarcsai Gy. Correlated changes in sunspot numbers and in corn and wheat fields. Annales Univ. Sci. Bp., R. Eötvös, Sec. Geophys. Meteor., 11, 191—206 (1995).
8. Chum J., Santolik O., Parrot M. Analysis of subprotonospheric whistlers observed by DEMETER: A case study. J. Geophys. Res., 114, A02307 (2009).
9. Currie R. G. Distribution of solar cycle signal in surface air temperature over North America. J. Geophys. Res., 84, 753—761 (1979).
https://doi.org/10.1029/JC084iC02p00753
10. Dudkin F., Korepanov V., Lizunov G. Experiment VARIANT — first results from Wave Probe instrument. Adv. Space Res., 43 (12), 1904—1909 (2009).
https://doi.org/10.1016/j.asr.2009.03.018
11. Ferencz Cs. Electromagnetic wave propagation: The analysis of the group velocity. Acta Technica Ac. Sci. H, 86 (1-2), 169—213 (1978).
12. Ferencz Cs. Electromagnetic wave propagation in moving media with special regard to frequency-shifts (‘Anomalous’ frequency shifts in astronomy). Acta Technica A. Sci. H., Part I, 89 (3-4), 451— 471; Part II, 90 (1-2), 24—58; Part III, 90 (3-4), 303—319 (1979—1980).
13. Ferencz Cs. Real solution of monochromatic wave propagation in inhomogeneous media. PRAMANAJ. Phys., 62, 943—955 (2004).
14. Ferencz Cs. Exact solution of Maxwell’s equations in inho-mogeneous moving media. In: Lichtenberger J., Ferencz Cs., Steinbach P. (Eds) 3rd VERSIM Workshop 2008: Abstract book, Tihany, 15—20 Sept. 2008. (2008).
15. Ferencz Cs., Ferencz O. E., Hamar D., Lichtenberger J. Whistler phenomena, Short impulse propagation. (Kluwer Academic Publishers, Dordrecht, 2001).
https://doi.org/10.1007/978-94-015-9642-8
16. Ferencz O. E., Bodnár L., Ferencz Cs., et al. Ducted whistlers propagating in higher order guided mode and recorded on board of Compass-2 satellite by the advanced Signal Analyzer and Sampler SAS2. J. Geophys. Res., 114, A03213 (2009).
17. Hayakawa M. (Ed.). Atmospheric and ionospheric electromagnetic phenomena associated with earthquakes. (Terra Scientific Publishing Co., Tokyo, 1999).
18. Inan U. S., Platino M., Bell T. F., et al. CLUSTER measurements of rapidly moving sources of ELF/VLF chorus. J. Geophys. Res., 109, Art. N A05214 (2004).
https://doi.org/10.1029/2003JA010289
19. Klimov S. I. Researches of influence of space weather on a condition of middle latitude and near-equator ionosphere. In: Contemporary problems of solar-terrestrial influences: Tenth Jubilee International Scientific Conference, November 20—21, 2003, Sofia, Bulgaria, 12—13 (Sofia, 2003).
20. Klimov S. I., Afanasyev Yu.V., Eismont N. A., et al. Results of in-flight operation of scientific payload on micro-satellite «Kolibri-2000». Acta Astronautica, 56 (1-2), 99—106 (2005).
https://doi.org/10.1016/j.actaastro.2004.09.004
21. Klimov S. I., Korepanov V. Ye., Lissakov, Y. V., et al. «Obstanovka» Experiment Onboard International Space Station for Space Weather Research. In: Space Weather Applications Pilot Project: Space Weather Workshop: Proceeding, 16—18 December 2002, ESTEC, Noordwijk The Netherlands. (2002).
22. Klimov S. I., Tamkovich G. M., Angarov V. N., et al. Aerospace education program realization by means of the micro-satellite. Acta Astronautica, 56 (1-2), 301—306 (2005).
https://doi.org/10.1016/j.actaastro.2004.09.008
23. Korepanov V. The modern trends in space electromagnetic instrumentation. Adv. Space Res., 32 (3), 401—406 (2003).
https://doi.org/10.1016/S0273-1177(03)90280-8
24. Kuznetzov V. D., Ruzhin Yu. Ja., Mikhailov Yu. M., et al. VLF experiment on the Compass 2 satellite and ground-based measurements of the seismoelectromagnetic effects on Kamchatka. Low-frequency wave processes in space plasma: 10th International Seminar, Zvenigorod, November 12—16, 2007, P. 6.1 (2007).
25. Lichtenberger J., Ferencz Cs., Bodnár L., et al. Automatic Whistler Detector and Analyzer (AWDA) system. I. Automatic Whistler Detector. J. Geophys. Res., 113, A12201 (2008).
26. Lichtenberger J., Tarcsai Gy., Pásztor Sz., et al. Whistler doublets and hyperfine structure recorded digitally by the Signal Analyzer and Sampler on the ACTIVE satellite. J. Geophys. Res., 96, 21149—21158 (1991).
https://doi.org/10.1029/91JA01616
27. Masalov A. V., Syutkina E. V. Magnetic storms and neonatal blood pressure and heart rate chronomes. Neuroen-docrinology Lett., 24, 111—116 (2003).
28. Mitra K., Mukherji S., Dutta S. N. Some indications of 18.6 year luni-solar and 10—11 year solar cycles in rainfall in north-west India, plains of Uttar-Pradesh and north-central India. International J. Climatology, 11, 645—652 (1991).
https://doi.org/10.1002/joc.3370110606
29. Moullard O., Masson A., Laakso H., et al. Density modulated whistler mode emissions observed near the plas-mapause. Geophys. Res. Lett., 29 (20), P. 1975 (2002).
30. Parrot M., Benoist D., Berthelier J. J., et al. The magnetic field experiment IMSC and its data processing onboard DEMETER: scientific objectives, description and first results. Planetary and Space Sci., 54 (5), 441—455 (2006).
https://doi.org/10.1016/j.pss.2005.10.015
31. Parrot M., Zaslavski Y. Physical mechanisms of man made influences on the magnetosphere. Surveys in Geophysics, 17, 67—100 (1996).
https://doi.org/10.1007/BF01904475
32. Pickett J. S., Santolik O., Kahler S. W., et al. Multi-point CLUSTER observations of VLF risers, fallers and hooks at and near the plasmapause, in multiscale processes in the Earth’s magnetosphere: from INTERBALL to CLUSTER. In: NATO Science Book Series, Eds J-A. Sauvaud, Z. Nemecek, 307—328 (Kluwer Academic Publishers, Dordrecht, 2004).
33. Rodger M. A., Thomson C. J., Lichtenberger N. R., et al. Total solar eclipse effect on VLF signals: Observations and modelling. Radio Sci., 36, 773—788 (2001).
https://doi.org/10.1029/2000RS002395
34. Schröder W. Auroral frequency in the 17th and 18th centuries and the «Maunder minimum». J. Atmospheric and Terrestrial Phys., 41, 445—446 (1979).
https://doi.org/10.1016/0021-9169(79)90069-2
35. Williams E. R. The Schumann resonance: a global tropical thermometer. Science, 256, 1184— 1187 (1992).
https://doi.org/10.1126/science.256.5060.1184
36. Zelenyi L. M., Rodin V. G., Angarov V. N., et al. Micro-satellite «Chibis» — universal platform for development of methods of space monitoring of potentially dangerous and catastrophic phenomena. In: Roeser H.-P., Sandau R., Valenzuela A. (Eds.) Selected Proceedings of the 5th International Symposium of the International Academy of Astronautics, Berlin, April 4—8, 2005, 443—451 (Walter de Gruter, Berlin, New York, 2005). color:#231F20;mso-ansi-language: EN-US'> 
29. Waldmeier M., Weber S. E. Shape and structure of the corona at the solar eclipse of October 23, 1976. Astron. Mitt. Eidgen. Sternwarte Zürich, No. 353 (1977).
30. Waldmeier M., Weber S.E. The solar eclipse of October 12, 1977. Astron. Mitt. Eidgen. Sternwarte Zürich, No. 369 (1978).

31. Wallenquist A. On the distribution of light in the solar co­rona of June 30, 1954. Uppsala Astron. Obs. Ann., 4 (4), 3— 36 (1957).