Cytological mechanisms of gravity-dependent changes in a bone tissue

1Rodionova, NV, 2Oganov, VS
1I.I. Schmalhausen Institute of Zoology of National Academy of Sciences of Ukraine, Kyiv, Ukraine
2SSC RF «Institute of Medical and Biological Problems» RAS, Moscow, Russia
Kosm. nauka tehnol. 2002, 8 ;(5-6):071-076
Publication Language: English
The study was made of main changes in the osteoblasts and osteocytes ultrastructure in bone tissue cells of monkeys (Macaca mulatta), flown for two weeks aboard the biosatellite BION-11. By the use of methods of electron microscopy, cytochemistry and morphometry we researched biopsy material of an iliac bone. It was established by ultrastructural indexes that under microgravity conditions in the osteoblasts population little active forms (4th morphofunctional type) prevail. Also we discovered osteoblasts of a fibroblastic type and local zones of fibrosis. In the osteocytes population we found not only typical cells but also octeocytes with developed RER. Processes of osteocytic osteolysis increased.
Keywords: cytological mechanisms, osteoblasts, osteocytes
1. Belanger L. F. Osteolysis: an outlook of its mechanism and causation. In: The Parathyroid Glands, 137—143 (Chicago Univ. Press, Chicago, 1965).
2. Berezovskaya O. P., Rodionova N. V. The influence of microgravity on osteogenic cells in culture. Cytology and Genetics, 32 (4), 3—8 (1998).
3. Doty S. B., Morey-Holton E. R., Durnova G. N., Kaplansky A. S. Cosmos-1887: morphology, histochemistry and vasculature of the growing rat tibia. FASEB J., 4, 16—23 (1990).
4. Duke P. J., Durnova G. N. and Montufar-Solis D. Histomorphometric and electron microscopic analyses of tibial epiphyseal plates from Cosmos 1887 rats. FASEB J., 4, 29—30 (1990).
5. Freed Lisa E., Langer R., Martin I., et al. Tissue engineering of cartilage in space. Proc. Nat. Acad. Sci. USA, 94, 13885—13890 (1998).
6. Grigoriev A. I., Volozin A. I., Stupakov G. P. Human mineral metabolism in weightlessness. Problems of Space Biology, Vol. 74, 214 p. (Nauka, Moscow, 1994) [in Russian].
7. Luk S., Nopajaroonski C, Simon G. T. The ultrastructure of Cortial bone in young adult rabbits. J. Ultrastruct. Res., 46, 184—205 (1974).
8. Morukov B. V., Larina I. M., Grigoriev A. I. Changes of calcium metabolism and that regulation in human during long term space flight. Human Psychology, 24 (2), 102—107 (1998).
9. Oganov V. S. Manifestation of adaptation in structural-functional changes of bone-muscle system of mammals in the space flight. In: Space Biology and Aerospace Medicine: Tez. of reports from X Conf., 14—15 (Slovo, Moscow, 1994).
10. Oganov V. S., Shneider V. The skeletal system. In: Space Biology and Medicine III. Humans in Spaceflight, 247—266 (Washington. D. C, 1996).
11. Rodionova N. V. Functional morphology of cells in osteogenesis, 192 p. (Naukova Dumka, Kyiv, 1989).
12. Rodionova N. V., Shevel I. M., Oganov V. S., et al. Bone ultrastructural changes in BION-11 rhesus monkeys. J. Grav. Physiol., 7 (1), 157—162 (2000).
13. Veldhuijzen J. P., van Loon J. J. W. A. Mineral metabolism in isolated mouse long bone: opposite effect of microgravity on mineralization and resorption. In: Life sci. res. in Space. V Europe Symp., Proceedings, 19—24 (Arcachon, France, 1994).
14. Vico L., Lafage-Proust M.-H., Alexandre C. Effects of gravitational changes on the bone system in vitro and in vivo. Summary of research issues in biomechanics and mechanical sensing. Bone, 5, 95—100 (1998).

15. Zerath E. The G-factor as a tool to learn more about bone structure and function. J. Gravitat. Physiol., 6 (1), 77—80 (1999).