Some problems in the investigation of the processes of directional crystallization under microgravity (creating the MORPHOS installation)

1Shpak, AP, 1Fedorov, OP, 1Bersudsky, EI, 1Zhivolub, EL
1G.V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2002, 8 ;(5-6):019-027
https://doi.org/10.15407/knit2002.05.019
Publication Language: Russian
Abstract: 
The MORPHOS installation for the ground-based study of solidification structure during directional crystallization of transparent substances is designed. The work performed is a stage of preparation of the integrated space experiment which will allow one to detect fundamental peculiarities of structure formation during directional crystallization under space conditions. The spesial feature of our approach is the possibility to investigate single crystals grown in various crystallographic directions. The comparison of flight and ground-based data as well as their comparison with the experiment in quasi-two-dimensional preparation will allow one to determine the basic physical mechanisms of gravity convection effect on structure formation of crystalline materials and to make some recommendations 1 concerning methods of action on this process under space conditions as well.
Keywords: crystalline materials, gravity convection, structure formation
References: 
1. Abramov O. V. Crystallization of metals in ultrasonic field, 256 p. (Metallurgia, Moscow,  1972) [in Russian].
2. Billia B., Trivedi R. In: Handbook of Crystal Growth, 1, P. B.
3. Buhler L., Davis S. H. In: J. Cryst. Growth., 186, 629—647 (1998).
https://doi.org/10.1016/S0022-0248(97)00825-7
4. Coriell S. R., Hurle D. T. J., Sekerka R. F. In: J. Cryst. Growth., 167, 1 (1964).
5. Dussert C., Rasigni G., Rasigni M., Palmari J. Minimal spanning tree: A new approach for studying order and disorder. Phys. Rev. B, 34 (5), 3528—3531 (1986).
https://doi.org/10.1103/PhysRevB.34.3528
6. Fedorov O. P., Zhivolub E. L. Structure of metal single crystals grown in various crystallographic directions from melt. Crystallography Reports, 43 (5), 877—883 (1998).
7. Flemings M. Solidification Processing. (N. Y., 1974).
8. Hunt J. D., Lu S. In: Metall. Mater. Trans., 27A, 611 (1996).
https://doi.org/10.1007/BF02648950
9. Kauerauf B., Zimmerman G., Murmann L., Rex S. Planar to cellular transition in the system succinonitrile-acetone during directional solidification of a bulk sample. J. Cryst. Growth., 193, 701—711 (1998).
https://doi.org/10.1016/S0022-0248(98)00543-0
10. Kauerauf B., Zimmerman G., Rex S., et al. Directional cellular growth of succinonitrile-0.075 wt % acetone bulk samples. Part 2: Analysis of cellular pattern. J. Cryst. Growth., 223, 277—284 (2001).
https://doi.org/10.1016/S0022-0248(00)01007-1
11. Kauerauf B., Zimmerman G., Rex S., et al. Directional cellular growth of succinonitrile-0.075wt % acetone bulk samples. Part 2: Results of space experiments. J. Cryst. Growth., 223, 265—276 (2001).
https://doi.org/10.1016/S0022-0248(00)01006-X
12. Mullins W. W., Sekerka R. F. In: J. Appl. Phys., 33, 444 (1964).
https://doi.org/10.1063/1.1713333
13. Noel N., Jamgotchian H., Billia B. In situ and real-time observation of the formation and dynamics of a cellular interface in a succinonitrile-0.5 wt % acetone alloy directionally solidified in a cylinder. J. Cryst. Growth., 181, 117—132 (1997).
https://doi.org/10.1016/S0022-0248(97)00274-1
14. Noel N., Jamgotchian H., Billia B. Influence of grain boundaries and natural convection on microstructure formation in cellular directional solidification of dilute succinonitrile alloys in a cylinder. J. Cryst. Growth., 187, 516—526 (1998).
https://doi.org/10.1016/S0022-0248(97)00882-8

15. Young G. W., Davis S. H., Bratkus K. In: J. Cryst. Growth., 83, 560 (1987).
https://doi.org/10.1016/0022-0248(87)90251-X