Changes of turbulence processes in thermosphere in the passage of inner gravity waves

1Kozak, LV
1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kosm. nauka tehnol. 2002, 8 ;(5-6):086-090
Publication Language: Ukrainian
We modelled the influence of inner gravity waves (IGW) on the turbulence intensification at the mesopause and lower thermosphere heights. The propagation of IGW in the horizontally stratificated non-isothermal atmosphere is considered. We compared the turbulence coefficients both for the temperature and wind background values and when the disturbances of atmosphere parameters in the passage of a wave were taken into account. The UARS satellite data were taken as the temperature and wind background values. We noted the changes of the coefficients of turbulent viscosity and temperature conductivity in moderately thin layers of the atmosphere in the passage of IGW.
Keywords: inner gravity waves, lower thermosphere, turbulence
1. Bidlingmayer E. R., Ivanovsky A. I., Pogoreltsev A. I. Formation of the Vertical Acoustic-Gravity Waves Structure by Processes of Molecular Viscosity and Thermal Conductivity. Izv. Akad.  Nauk SSSR, Fiz. Atmos. Okeana, 26 (7), 682—692 (1990) [in Russian].
2. Voitov G. I., Dobrovol’skii I. P. Chemical and Isotopic-Carbon Instabilities of Natural Gas Flows in Seismically Active Regions. Fizika Zemli, No. 3, 20—31 (1994) [in Russian].
3. Gordiets B. F., Kulikov Yu. N. On the role of turbulence and infrared radiation in the heat balance of the lower thermosphere. In: Basov N. G. (Ed.) Infrared spectroscopy of cosmic matter and the properties of the environment in space, Tr. Fiz. in-ta, AS USSR, Vol. 130, 29—47(Nauka, Moscow, 1982) [in Russian].
4. Gordiets B. F., Kulikov Yu. N., Markov M. N., Marov M. Ya. Numerical modeling of heating and cooling of gas in near-Earth space. In: Basov N. G. (Ed.) Infrared spectroscopy of cosmic matter and the properties of the environment in space, Tr. Fiz. in-ta, AS USSR, Vol. 130, 3—28 (Nauka, Moscow, 1982) [in Russian].
5. Gokhberg M. B., Nekrasov A. K., Shalimov S. L. On influence of greenhouse gases instable injection to the ionosphere in seismic active regions. Fizika Zemli, No. 8, 52—55 (1996) [in Russian].
6. Gokhberg M. B., Shalimov S. L. Lithosphere–ionosphere relation and its modeling. Russian Journal of Earth Sciences, 2 (1), 3—26 (2000) [in Russian].
7. Dzubenko M. I., Ivchenko V. M., Kozak L. V. Temperature variations over earthquake epicenters from observations obtained by the UARS satellite. Kosm. nauka tehnol., 7 (5-6), 94—99 (2001) [in Russian].
8. Lin'kov E. M., Petrova L. N., Osipov K. S. Seismogravitational pulsations of the earth and atmospheric disturbances as possible precursors of major earthquakes. Akademiia Nauk SSSR, Doklady, 313 (5), 1095—1098 (1990) [in Russian].
9. Monin A. S., Yaglom A. M. Statistical Fluid Mechanics. Part 2, 639 p. (Nauka, Moscow, 1965) [in Russian].
10. Hines C. O. Atmospheric Gravity Waves. Thermospheric Circulation, 85—99 (Mir, Moscow, 1975) [in Russian].
11. Khananyan A. A. Experimental estimations of small-scale turbulence characteristics in middle atmosphere. Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 24 (1), 95—98 (1988) [in Russian].
12. Yudin V. A., Gavrilov N. M. A Semi-Empirical Model of Closing a System of Equations for Gravity Waves and Turbulence in the Upper Atmosphere. Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 25 (10), 1026—1032 (1989) [in Russian].
13. CIRA-72: COSPAR International Reference Atmosphere, 450 p. (Akademie-Verlag, Berlin, 1972).
14. Hocking W. K. Turbulence in the altitude region 80—120 km. Adv. Space Res., 10 (12), 153—161 (1990).
15. Hodges R. R. Jr. Eddy diffusion coefficients due to instabilities in internal gravity waves. J. Geophys. Res., 74, 4087—4090 (1969).

16. Yamamoto Mamoru, Tsuda Toshitaka, Kato Susumu, et al. A saturated intertia gravity wave in the mesosphere observed by the middle and upper atmosphere radar. J. Geophys. Res., 92, 11993—11999 (1987).