Modeling molecular plant-bacteria interactions for flight experiment

1Kozyrovska, NA, 1Kovtunovych, GL, 1Lar, EV, 1Kovalchuk, MV, 1Rogutskyi, IS, 1Alpatov, AP, 1Kordyum, VA
1Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2002, 8 ;(5-6):081-085
Publication Language: English
The ability to grow plants in space self-perpetuating gardens is an actual for providing an advanced life support system for humans during extended missions. However, space factors affect expression of the genes regulated by the systems, sensing environmental signals. In space a risk of genetic rearrangements is increased, and some changes in bacterial DNA expected. As a consequence, bacteria may exhibit novel characters, e.g., pathogenicity. During the previous our experience we have determined an increase of internal colonization of the rice roots with bacteria in space flight. To understand the data and to predict acquisition of increased aggressiveness towards the plant-host by bacteria, molecular-genetic plant-bacteria interactions affected with physical factors will be simulated. Genes coding for bacterial pectinases provide a suitable model for studies of well-integrated objectives, concerning plant-bacteria interactions.
Keywords: bacteria, DNA, genetic rearrangements
1. Amundson S. A., Bittner M., Meltzer P., Trent J., Fornace A. Induction of gene expression as a monitor of exposure to ionizing radiation. Radiat. Res., 156, 657—661 (2001).[0657:IOGEAA]2.0.CO;2
2. Bridges B. A. Radiation and germline mutation at repeat sequences: are we in the middle of a paradigm shift? Radiat. Res., 156, 631—641 (2001).[0631:RAGMAR]2.0.CO;2
3. Chalfie M., Tu Y., Euckirchen G., et al. Green fluorescent protein as a marker of gene expression. Science, 263, 802—805 (1994).
4. de Lorenzo V., Herrero M., Jakubzik U., et al. Mini-Tn5 trasposon derivatives for insertion mutagenesis, promoter prob­ing, and chromosomal insertion of cloned DNA in gram-negative Eubacteria. J. Bacterid., 172, 6568—6572 (1990).
5. Garbeva P., van Overbeek L. S., van Vuurde W. L., van Elsas J. D. Analysis of endophytic bacterial communities of potato and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microb. Ecol., 41, 369—383 (2001).
6. Harada K., Sugahara T., Ohnishi T., et al. Inhibition in a microgravity environment of the recovery of Escherichia coli cells damaged by heavy ion beams during the NASDA ISS phase I program of NASA Shuttle/Mir mission no. 6. Int. J. Mol. Med., 1, 817—822 (1998).
7. Horneck G. Impact of microgravity on radiobiological processes and efficiency of DNA repair . Mutat. Res., 6, 221—228 (1999).
8. Horneck G., Schafer M., Baltschukat K., et al. Cell inactivation, repair and mutation induction in bacteria after heavy ion exposure: results from experiments at accelerators and in space. Adv. Space Res., 9, 105—116 (1989).
9. Hurek T., Handley L. L., Reinhold-Hurek B., Piche Y. Azoarcus grass endophytes contribute fixed nitrogene to the plant in an unculturable state. Molec. Plant-Microbe Interactions, 15, 233—242 (2002).
10. Kleiner D., Wyatt P., Merrick M. Construction of multicopy expression vectors for regulated overproduction of proteins in Klebsiella pneumoniae and other enteric bacteria. J. Gen. Microbiol., 134, 1779—1784 (1988).
11. Kordyum V. A., Man'ko V. G., Popova A. F., et al. Changes in symbiotic and associative interrelations in a higher plant-bacterial system during flight. Adv. Space Res., 3, 265—268 (1983) [in Russian].
12. Kordyum V. A., Polivoda L. V., Mashinsky A. L., Kon'shyn N. I. Impact of space flight on developing organisms, in Growth of microorganisms out of Earth, Ed. by V. A. Kordyum, 64—114 (Naukova dumka, Kiev, 1978) [in Russian].
13. Kovtunovych G., Lar O., Kamalova S., et al. Correlation between pectate lyase activity and ability to penetrate into plant tissues by diazotrophic Klebsiella oxytoca VN 13. Plant and Soil., 260, 1—6 (1999).
14. Kovtunovych G., Lar O., Kozyrovska N. Cloning and structural analysis of the Klebsiella oxytoca VN13 peh gene. Bio-polymery i klityna, 16, 356—363 (2000) [in Ukrainian].
15. Kozyrovska N., Alexeyev M., Kovtunovych G., et al. Survival of Klebsiella oxytoca VN13 engineered to bioluminescence on barley roots during plant vegetation. Microbial Releases, 2, 262—265 (1994).
16. Lar O., Kovtunovych G., Kozyrovska N. Cloning and analysis of the gene encoding pectate lyase (pelX) of Klebsiella oxytoca VN13. Biopolymery i klityna, 18, Ml—Ml (2002) [in Ukrainian].
17. Leach J. E., Ruba-White M., Sun Q., et al. Plants, plant pathogens, and microgravity — a deadly trio. Gravit. Space Biol. Bull., 149, 15—23 (2001).
18. Man'ko V. G., Kordyum V. A., Vorobiova L. V., et al. Dynamics of the Proteus vulgaris growth in the apparatus ROST-4M2 at space station Salut-7. In: Sytnik K. M. (Ed.) Space biology and biotechnology, 3—9 (Naukova dumka, Kiev, 1986) [in Russian].
19. Nguyen T., Ton T., Tarasenko V., Kozyrovska N. Nitrogen-fixing bacteria colonize of the rice root xylem. Biopolymery i klityna, 5, 97—99 (1989) [in Ukrainian].
20. Reiter B., Pfeifer U., Schwab H., Sessitsch A. Response of endophytic bacteria communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl. Environ. Microbiol., 68, 2261—2268 (2002).
21. Rosenbaum V., Riesner D. Temperature-gradient gel electrophoresis — thermodynamic analysis of nucleic acids and proteins in purified form and in cellular extracts. Biophys. Chem., 26, 235—246 (1987).
22. Shulzhenko V., Kordyum V. Cloning of the maize sequences autonomously replicated in Saccharomyces cerevisiae. Biopolymery i klityna, 3, 270—274 (1987) [in Russian].
23. Simon R., Pfiefer U., Puhler A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnology, 1, 784—794 (1983).
24. Stankovic B., Link B. M., Zhou W. Arabidopsis rocket science (Abstract). 34 COSPAR (Houston, 10—19 October, 2002).
25. Tarasenko V. A., Kozyrovska N., Nechitailo G. S., et al. Cytological aspects of relationships of eucaryotes and nitrogen-fixing cyanobacteria in artificial association under microgravity (Abstract). 28 COSPAR, P. 55 (Hague, The Netherlands, 1990).
26. Thevenet D., D'Ari R., Bouloc P. The SIGNAL experiment in BIORACK: Escherichia coli in microgravity. J. Biotechnol., 47, 89—97 (1996).
27. Tzetlin V. V., Deshevaya E., Novikova N., et al. An impact of a low dose irradiation on microbial community of space stations (Abstract). Second Ukrainian conference on perspective space investigations, September 21—27, 2002, Katzyveli, Ukraine, P. 158 (Katzyveli, 2002) [in Russian].
28. van Elsas J. D., Trevors J. T., Starodub M. E. Bacterial conjugation between pseudomonads in the rhizosphere of wheat. FEMS Microbiol. Ecol., 53, 299—306 (1988).
29. Wellington E. M. H., van Elsas J. D. Genetic interactions among microorganisms in the natural environment. (Pergamon Press, Oxford, United Kingdom, 1992).
30. Weng M., Li J., Gao H., et al. Mutation induced by space conditions in Escherichia coli strains. Space Med. Eng. (Beijing), 11, 245—248 (1998).
31. Wilson J. W., Ramamurthy R., Porwollik S., et al. Microarray analysis identifies Salmonella genes belonging to the low-shear modeled microgravity regulon. Proc. Natl. Acad. Sci. USA, 99, 13807—13812 (2002).
32. Wilson K. J., Sessitsch A., Corbo J. C, et al. β-Glucuronidase (GUS) transports for ecological and genetic studies of rhizobia and other Gram-negative bacteria. Microbiology, 141, 1691 — 1705 (1995).

33. Zinniel D. K., Lambrecht P., Harris N. B., et al. Isolation and characterization of endophytic colonizing bacteria from agro­nomic crops and prairie plants. Appl. Environ. Microbiol., 68, 2198—2208 (2002).