Tasks of the spectropolarimetric experiment aboard the International space station

1Morozhenko, OV, 1Vidmachenko, AP
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2002, 8 ;(5-6):039-044
Publication Language: Ukrainian
We list the main scientific tasks which can be solved aboard the ISS on the basis of UV-polarimetric observations. The tasks are the following: 1) the determination of spectral values of the complex refractive index of cloud particles; 2) the investigation of the nature of photometric details of discs of planets with thick atmospheres; 3) the monitoring of the long-period changes of optical properties of planetary atmospheres and the elucidation of the possible mechanism of the occurrence of the changes; 4) solving the problem of strong-absorbing Axel particles to which the effects of the UV-ab-sorption in planetary atmospheres are attributed; 5) the investigation of the thickness of hydrogen atmospheres of comets; 6) the elucidation of the causes of variations of the ozone layer thickness and temperature conditions on a global scale; 7) the improvement of the spectral values of the imaginary part of the refractive index of the martian aerosol and its optical thickness, as well as the effective radius of particles.
Keywords: aerosol, planetary atmospheres, spectropolarimetric experiment
1.. Bugaenko O. I., Dlugach Zh. M., Morozhenko A. V., Yanovitskii É. G. Optical properties of Saturn's cloud layer in the visible spectral region. Astron. vestn., 9 (1), 13—21 (1975) [in Russian].
2. Bugaenko O. I., Morozhenko A. V. Oriented particles in the upper layers of Saturn's atmosphere. In: Physics of planetary atmospheres, 108—112 (Nauk. dumka, Kiev, 1981) [in Russian].
3. Vidmachenko A. P., Steklov A. F., Minyajlo N. F. Seasonal activity on Jupiter? Pisma v Astron. Zhurn., 10 (9), 691—695 (1984) [in Russian].
4. Harris D. L. Photometry and Colorimetry of Planets and Satellites. In: Kuiper G. P., Middlehurst B. M. (Eds) Planets and Satellites, 241—305 (Izd-vo inostr. lit., Moscow, 1963) [in Russian].
5. Dlugach Zh. M., Morozhenko O. V. Aerosol in the Martian atmosphere. Kinematika i Fizika Nebesnykh Tel, 16 (5), 437—453 (2000) [in Ukrainian].
6. Dollfus O., Dlugach Zh. M., Morozhenko, A. V., Yanovitskii É. G. Optical Parameters of the Atmosphere and Surface of Mars. II. Dust Strom. Astron. vestn., 8 (4), 211—222 (1974) [in Russian].
7. Kucherov V. A., Mishchenko M. I., Morozhenko A. V. Spectropolarimetry Within Absorption Bands and the Vertical Structure of Planetary Atmospheres. Pisma v Astron. Zhurn., 14 (9), 835—839 (1988) [in Russian].
8. Lupishko D. F., Bel'skaia I. N., Kvaratskheliia O. I., et al. The polarimetry of Vesta during the 1986 opposition. Astron. vestn., 22 (1), 142—146 (1988) [in Russian].
9. Morozhenko A. V. Polarimetric Observations of the Giant Planets. III. Jupiter. Astronomicheskii Zhurnal, 50 (1), 163—166 (1973) [in Russian].
10. Morozhenko A. V. Optical parameters of the atmosphere and surface of Mars. I - Aerosol component of the clear atmosphere. Astron. vestn., 8 (3), 121 — 127 (1974) [in Russian].
11. Morozhenko A. V. Zones and belts of the Jupiter disk - The above-cloud layer. Astron. vestn., 24 (3), 211—220 (1990) [in Russian].
12. Morozhenko A. V. Short-term periodic variations in the polarization properties of Venus radiation. Kinematika i Fizika Nebesnykh Tel, 8 (4) 22—36 (1992) [in Russian].
13. Morozhenko O. V., Shavrina A. V., Veles' A. A. The importance of the stratospheric aerosol in the formation of the ozone layer. Kinematika i Fizika Nebesnykh Tel, 16 (4) 364—368 (2000) [in Russian].
14. Sobolev V. V. An Investigation of the Atmosphere of Venus. II. Astronomicheskii Zhurnal, 45 (1), 169—176 (1968) [in Russian].
15. Fomin N. N., Yanovitskij Eh. G. Global variations of the optical thickness of the Venus atmosphere. III - Analysis of the behavior of equivalent widths of CO2 lines for an inhomogeneous atmosphere model. Kinematika i Fizika Nebesnykh Tel, 9 (4) 30—42 (1993) [in Russian].
16. Heath D. F., Thekaekara M. P. The solar spectrum  between 1200 and 3000 Å. In: White O. R. (Ed.) The solar output and its variation, 212—232 (Mir, Moscow, 1980) [in Russian].
17. Axel L. Inhomogenous models of the atmosphere of Jupiter. Astrophys. J., 173 (2), 451—468 (1972).
18. Coffen D. L., Gehrels T. Ultraviolet polarimetry of planets. Planet, and Space Res., 10 (1), 1—7 (1970).
19. Fox G. K., Code A. D., Anderson C. M., et al. Solar system observations by the Wisconsin Ultraviolet Photopolarimeter Experiment. I. The first ultaviolet linear spectropolarimetry of Mars. Astron. J., 113 (3), 1152—1157 (1997).
20. Hansen J. E., Hovenier J. W. Interpretation of the polarization of Venus. J. Atmos. Sci., 31 (4), 1137—1160 (1974).
21. Kawabata K., Coffeen D. L., Hansen J. E., et al. Cloud and haze properties from Pioneer Venus polarimetry. J. Geophys. Res., 85 (A13), 8129—8140 (1980).
22. Knibble W. J. J., de Haan J. F., Hovenier J. W. Analysis of temporal variations of the polarization of Venus observed by Pioneer Venus orbiter. J. Geophys. Res., 10 (E4), 8557—8574 (1998).
23. Knollenberg R. G., Hunten D. M. The microphysics of the clouds of Venus: Results of the Pioneer Venus particle size spectrometer experiment. J. Geophys. Res., 85 (A13), 8039—8058 (1980).
24.  Lyot B. Recherches sur la polarization de la lumiere des planetes et de quelgues substance terresteres. Ann. Observ. Meudon.—1929.—8.—P. 1 — 161.
25.  Morozhenko A. V., Yanovitskij E. G. The optical properties of Venus and Jovian planets. I. The atmosphere of Jupiter according to polarimetric observations . Icarus.—18.—1971, N 4.—P. 583—592.

26.  Serkovski K. Polarimeters for optical astronomy. Planets, Stars and Nebula with photopolarimetry. Ed. T. Gehrels. — 1974.—P. 135—174.