Modeling the pNARSLux transfer in the wheat rhizosphere under simulated microgravity

1Kovalchuk, MV, 1Negrutska, VV, 1Kovtunovych, GL, 1Lar, EV, 1Korniichuk, ОS, 1Rogutskyi, IS, 1Alpatov, AP, 1Kozyrovska, NA, 1Kordyum, VA
1Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2003, 9 ;(Supplement2):010-014
https://doi.org/10.15407/knit2003.02s.010
Publication Language: English
Abstract: 
Model experiments on conjugal plasmid transfer between bacteria in the wheat rhizosphere under simulated microgravity (SMG) were performed to evaluate potential of natural gene flow and risk of genetic recombinations in microorganisms in space gardens under stressed conditions of space flight. Strains of bacteria Klebsiella oxytoca IMBG 26, Pseudomonas sp. 7, P. putida 9, Agrobacterium tumefaciens 9023, Escherichia coli S-17 were selected for matings in the wheat microcosm on a clinostate with horizontal mode of rotations within a ten-day period. Transfer of pNARSLux was not detected in both clinorotated and control variants in sterile conditions. The changed vector of gravity influenced both plant development, resulted in a shorter seedling heights, and in bacteria spread on the surface of wheat roots resulted in a less amount of cells. In both variants of experiments (normal gravity and SMG) positive impact of bacteria on wheat seedling development is displayed as compared with control noninoculated plants.
References: 

1. Böltner D., MacMahon C., Pembroke J. T., et al. R391: a conjugative integrating mosaic comprised of phage, plasmid, and transposon elements . J. Bacteriol., 184, 5158—5169 (2002).
https://doi.org//10.1128/JB.184.18.5158-5169.2002
2. Brown J. R. Ancient horizontal transfer. Nature, 4, 121 — 132 (2003).
https://doi.org//10.1038/nrg1000
3. Cha C., Gao P., Chen Y. C., et al. Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Mol. Plant-Microbe Interact., 11, 1119—1129.
https://doi.org//10.1094/MPMI.1998.11.11.1119
4. Ferguson G. C., Heinemann J. A., Kennedy M. A. Gene transfer between Salmonella entericaserovartyphimurium inside epithelial cells. J. Bacteriol., 184, 2235— 2242 (2002).
https://doi.org//10.1128/JB.184.8.2235-2242.2002
5. Fry J. C., Day M. J. Plasmid transfer in the epilithon. In: Fry J. C., Day M. J. (Eds.) Bacterial genetics in natural environments, 55—80 (Chapman and Hall, London, 1990).
https://doi.org//10.1007/978-94-009-1834-4_5
6. Hill K. E., Weightman A., Fry J. C. Isolation and screening of plasmids from the epilithon which mobilize recombinant plasmid pD10. Appl. Environ. Microbiol., 58, 1292— 1300 (1992).
https://doi.org//10.1128/AEM.58.4.1292-1300.1992
7. Juergensmeyer M. A., Juergensmeyer E. A., Guikema J. A. Plasmid acquisition in microgravity. J. Gravitat. Physiol., 2, 161 — 162 (1995).
8. Khesin R., Karasyova E. V. Mercury-resistance plasmids in bacteria from a mercury and antimony deposit area. Mol. Gen. Genet., 97, 280—285 (1984).
https://doi.org//10.1007/BF00330974
9. Kozyrovska N. O., Gvozdyak R. I., Muras V. A., Kordyum V. A. Changes in properties of phytopathogenic bacteria effected by plasmid pRD1. Arch. Microbiol., 137 (4), 337—343 (1984).
https://doi.org//10.1007/BF00410731
10. Kozyrovska N. O., Kovtunovych G. L., Lar O. V., et al. A modeling molecular plant-bacteria interactions. Kosm. nauka tehnol., 8 (5-6), 81—85 (2002).
https://doi.org//10.15407/knit2002.05.081
11. Lilley A. K., Fry J. C., Day M. J., Bailey M. J. In situ transfer of an exogenously isolated plasmid between Pseudomonas spp. in sugar beet rhizosphere. Microbiology, 140, 27—33 (1994).
https://doi.org//10.1099/13500872-140-1-27
12. Li M., Kotetishvili M., Chen Yu., Sozhamannan S. Comparative genomic analyses of the vibrio pathogenicity island and cholera toxin prophage regions in nonepidemic serogroup strains of Vibrio cholera. Appl. Environ. Microbiol., 69, 1728—1738 (2003).
13. Mishchenko L. T. The effect of artificial gravity on grow processes and photosynthetic apparatus of Triticumaestivum L. infected by the wheat streak mosaic virus. Kosm. nauka tehnol., 8 (5-6), 66—70 (2002) [in Russian].
https://doi.org//10.15407/knit2002.05.066
14. Pukall R., Tschflpe H., Smalla K. Monitoring the spread of broad host and narrow host range plasmids in soil microcosms. FEMS Microbiol. Ecol., 20, 53—66 (1996.).
https://doi.org//10.1111/j.1574-6941.1996.tb00304.x
15. Richaume A., Smit E., Fauri G., van Elsas J. D. Influence of soil type on the transfer of RP4p from Pseudomonas fluores-censto indigenous bacteria. FEMS Microbiol. Ecol., 101, 263—292 (1992).
https://doi.org//10.1111/j.1574-6968.1992.tb05785.x
16. Simon R., Priefer U., Pühler A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Nature Biotechnology, 1, 784—794 (1983)
https://doi.org//10.1038/nbt1183-784
17. Smit E., Venne D., van Elsas J. D. Mobilization of a recombinant IncQ plasmid between bacteria on agar and in soil via cotransfer or retrotransfer. Appl. Environ. Microbiol., 59, 2257—2263 (1993).
https://doi.org//10.1128/AEM.59.7.2257-2263.1993
18. Smit E., van Elsas J. D., van Veen J. A., de Vos W. M. Detection of plasmid transfer from Pseudomonas fluorescens to indigenous bacteria in soil by using bacteriophage Phi-r2f for donor counterselection. Appl. Environ. Microbiol., 57, 3482—3488 (1991).
https://doi.org//10.1128/AEM.57.12.3482-3488.1991
19. Stedman K. M., She O., Phan H., et al. pING Family of conjugative plasmids from the extremely thermophilic archaeon Sulfolobus islandicus: insights into recombination and conjugation in Crenarchaeota. J. Bacteriol., 182, 7014—7020 (2000).
https://doi.org//10.1128/JB.182.24.7014-7020.2000
20. Stotzky G. Gene transfer among bacteria in soil. In: Levy S. B., Miller R. V. (Eds) Gene transfer in the environment, 165—222 (McGraw-Hill, New York, 1989).
21. Sullivan J. T., Trzebiatowski J. R., Cruickshank R. W., et al. Comparative sequence analysis of the symbiosis ssland of Mesorhizobium loti strain R7A. J. Bacteriol., 184, 3086—3095 (2002).
https://doi.org//10.1128/JB.184.11.3086-3095.2002
22. Sytnik K. M., Kordyum V. A., Kordyum E. L., et al. Microorganisms in a space flight, Ed. by K. M. Sytnik, 156 p. (Nauk. dumka, Kiev, 1983) [in Russian].
23. Top E. M., de Rore H., Collard J.-M., et al. Retromobilization of heavy metal resistance genes in unpolluted and heavy metal polluted soil. FEMS Microbiol. Ecol., 18, 191 — 203 (1995).
https://doi.org//10.1111/j.1574-6941.1995.tb00176.x
24. van Elsas J. D., Trevors J. T. Starodub M.-E. Bacterial conjugation in the rhizosphere of wheat. FEMS Microbiol. Ecol., 53, 299—306 (1988).
https://doi.org//10.1111/j.1574-6968.1988.tb02676.x-i1
25. van Elsas J. D., McSpadden B. B., Wolters A. C., Smit E. Isolation, characterization, and transfer of cryptic gene-mobilizing plasmids in the wheat rhizosphere. Appl. Environ. Microbiol., 64 (3), 880—889 (1998).
https://doi.org//10.1128/AEM.64.3.880-889.1998
26. Wellington E. M. H., van Elsas J. D. Genetic interaction among microorganisms in the natural environment, 356 p. (Pergamon Press, London, 1992).
27. Wilson K. J., Sessitsch A., Corbo J. C., et al. ß-Glucuronidase (GUS) transposons for ecological and genetic studies of rhizobia and other Gram-negative bacteria. Microbiology, 141, 1691 — 1705 (1995).
https://doi.org//10.1099/13500872-141-7-1691