Some results of investigation of wave disturbances in the mesosphere

1Panasenko, SV, 2Chernogor, LF
1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
2V.N. Karazin National University of Kharkiv, Kharkiv, Ukraine
Kosm. nauka tehnol. 2004, 10 ;(5-6):122-127
Publication Language: Russian
We developed a new method for the study of wave disturbances (WD) in the upper mesosphere with the use of Kharkiv MF radar data. We present the theoretical foundations of the method and data processing procedure based on the spectral anlysis of the envelope amplitudes of the backscattered radio signals. The method is illustrated by a typical set of measurements, and the dependences of the WD statistical features on their period as well as on the level of magnetic activity are analysed.
1. Anderson T. W. The Statistical Analysis of Time Series, 755 p. (Mir, Moscow, 1976) [in Russian].
2. Aushev V. M., Ashkaliev Y. F., Wiens R. H., et al. Spectrum of atmospheric gravity waves in the mesosphere and thermosphere. Geomagnetizm i Aeronomiia, 42 (4), 560—568 (2002) [in Russian].
3. Burmaka V. P., Taran V. I., Chernogor L. F. Clustered-instrument studies of ionospheric wave disturbances accompanying rocket launches against the background of nonstationary natural processes. Radio Physics and Radio Astronomy, 9 (1), 5—28 (2004) [in Russian].
4. Gritchin A. I., Dorokhov V. L., Kontsevaya L. G., et al. Stationary complex of apparatus for studying the lower ionosphere by the method of partial reflections. Vestnik Kharkov. Universiteta. Radiofizika i Elektronika, No. 318, 21—24 (1988) [in Russian].
5. Ivanov V. A. Investigation of the D-region of the ionosphere by the method of partial reflections, 196 p. (VINITI, Yoshkar-Ola, 1985) [in Russian].
6. Kashcheev B. L., Oleinikov A. N. Spatiotemporal structure of internal gravity waves in the mesopause-lower thermosphere region as inferred from meteor radar observations. Geomagnetizm i Aeronomiia, 41 (3), 382—387 (2001) [in Russian].
7. Mikhailov Yu. M., Mikhailova G. A., Druzhin G. I., Kapustina O. V. Detection of atmospheric waves in the power spectra of atmospheric noise on Kamchatka. Geomagnetizm i Aeronomiia, 44 (2), 245—253 (2004) [in Russian].
8. Mikhailov Yu. M., Mikhailova G. A., Kapustina O. V., et al. Atmospheric noise variations on the Kamchatka peninsula during solar flares and geomagnetic disturbances. Geomagnetizm i Aeronomiia, 41 (6), 836—840 (2001) [in Russian].
9. Mikhailov Yu. M., Mikhailova G. A., Kapustina O. V., et al. Variations in the power spectra of the electric fields in the near-earth atmosphere at Kamchatka. Geomagnetizm i Aeronomiia, 43 (3), 422—428 (2003) [in Russian].
10. Panasenko S. V., Rozumenko V. T., Tyrnov O. F., Chernogor L. F. Dynamical processes in the lower ionosphere. Kosm. nauka tehnol., 9 (5-6), 76—80 (2003) [in Russian].
11. Yampolski Yu. M., Zalizovski A. V., Litvinenko L. M., et al. Magnetic Field Variations in Antarctica and the Conjugate Region (New England) Stimulated by Cyclone Activity. Radio Physics and Radio Astronomy, 9 (3), 130 — 151 (2004) [in Russian].
12. Budden K. G. The propagation of radio waves: The theory of radio waves of low power in the ionosphere and magnetosphere, 669 p. (Cambridge, 1988).
13. Manson A. H., Meek C. E., Koshyk J., et al. Gravity wave activity and dynamical effects in the middle atmosphere (60— 90 km): observations from an MF/MLT radar network, and results from the Canadian Middle Atmosphere Model (CMAM). J. Atm. Sol-Terr. Phys., 64, 65—90 (2002).