Microbial community in a precursory scenario of growing tagetespatula in a lunar greenhouse

1Kozyrovska, NA, 1Korniichuk, ОS, 1Voznyuk, TM, 1Kovalchuk, MV, 1Lytvynenko, ТL, 2Rogutskyy, IS, 3Mytrokhyn, OV, 4Estrella-Liopis, VR, 4Borodinova, ТI, 5Mashkovska, SP, 6Foing, BH, 1Kordyum, VA
1Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
2Institute of Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
3Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
4F.D. Ovcharenko Institute of Biocolloid Chemistry, NAS of Ukraine, Kyiv, Ukraine
5M.M. Gryshko National Botanic Garden of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
6ESA/ESTEC/SRE-S, postbus 299 NL-2200 AG, Noordwijk, The Netherlands
Kosm. nauka tehnol. 2004, 10 ;(5-6):221-225
https://doi.org/10.15407/knit2004.05.221
Publication Language: English
Abstract: 
A confined prototype plant-microbial system is elaborated for demonstration of growing pioneer plants in a lunar greenhouse. A precursory scenario of growing Tagetes patula L. in a substrate anorthosite which is similar mineralogically and chemically to lunar silicate rocks includes the use of a microbial community. Microorganisms served for preventive substrate colonization to avoid infection by deleterious microorganisms as well as for bioleaching and delivering of nutritional elements from anorthosite to plants. A model consortium of a siliceous bacterium, biocontrol agents, and arbuscular mycorrhizal fungi provided an acceptable growth and blossoming of Targetes patula L. under growth limiting factors in terrestrial conditions.
References: 
1. Alexandrov V. G., Zak G. A. Bacteria, destroying alumosili-cates (silicious bacteria). Microbiologia, 19, 97—104 (1950) [in Russian].
 
2. Brundrett M., Castro V. A., Thrasher A. N., et al. Microbial characterization during the early habitation of the international space station. Microbial Ecology, 47 (2), 119—126 (2004).
 
3. Chistoserdova L., Laukel M., Portais J. C., et al. Multiple formate dehydrogenase enzymes in the facultative methylotroph Methylobacterium extorquens AM1 are dispensable for growth on methanol. J. Bacteriol., 186 (1), 22—28 (2004).
 
4. Estrella-Liopis V. R., Ovcharenko F. D., Yurkova I. N. Diffusion layer of extracell metabolites and selective hetero-coagulation of mineral particles and microorganisms. Phys.-Chem. Mechanics and lyophility of Disperce Systems, B22, 1 — 10 (1991).
 
5. Groudev S. N. Biobeneficiation of mineral raw materials. Minerals and Metallurgical Processing, 16 (4), 19—28 (1999).
 
6. Killham K., Firestone M. K. Vesicular-arbuscular mycorrhizal mediation of grass response to acidic and heavy metal deposition. Plant Soil, 72, 32—48 (1983).
 
7. King E. O., Ward M. K., Raney D. E. Two simple media for the demonstration of pyocyanin and fluorescin. J. Lab. Clin. Med., 44, 301—307 (1954).
 
8. Kozyrovska N. O., Kovtunovych G. L., Lar O. V., et al. A modeling molecular plant-bacteria interactions. Kosm. nauka tehnol. 8(5-6), 81—85 (2002).
 
9. Lehman R. M., Roberto F. F., Earley D., et al. Attached and unattached bacterial communities in a 120-meter corehole in an acidic, crystalline rock aquifer. Appl. Environ. Microbiol., 67, 2095—2106 (2001).
 
10. Lychak I. L. Petrology of Korosten Pluton, 248 p. (Naukova dumka, Kyiv, 1983).
 
11. Malinovskaja I. M., Kosenko L. B.,Votcelko S. K., et al. Role of the Bacillus mucilaginosus polysaccharide in the process of siliceous minerals destruction. Microbiologia, 59, 70—78 (1990) [in Russian].
 
12. Miller J. H. Experiments in molecular genetics, 436 p. (Cold Spring Harbor Laboratory, 1972).
 
13. Mytrokhyn O. V., Bogdanova S. V., Shumlyanskyy L. V. Anorthosite rocks of Fedorivskyy suite (Korosten Pluton, Ukrainian Shield). Current problems of geological science, 53—57 (Kyiv State University, Kyiv, 2003).
 
14. Natarajan K. A., Modak J. M., Anand P. Some microbiological aspects of bauxite mineralization and beneficiation. Minerals and Metallurgical Processing, 14, 47—53 (1997).
 
15. Negrutska V. V., Kozyrovska N. O. Ecologically-friendly crop production with microbial inoculants. I. The Dual, technology for inoculant production. In: Int. Conf. Natural Ecosystems of the Carpathian Mountains Under Conditions of Intensive Anthropogenic Impact, October 4-7, 2001, Uzhhorod, Ukraine, 76—79 (2001).
 
16. Phylips J. M., Hayman D. S. Improved procedures for clearing and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc., 55, 158—161 (1970).
 
17. Rohwerder T., Gehrke T., Kinzler K., et al. Bioleaching review part A: Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl. Microbiol. Biotechnol., 63, 239—248 (2003).
 
18. Sorotchinski B. V., Kozyrovska N. O. Biotechnological aspects of phytoremediation of the objects in the environment from radionuclide pollution. Agrobiotechnology, 2, 123—130 (1998) [in Ukrainian].
 
19. Styriakova I., Styriak I., Galko I., et al. The release of iron-bearing minerals and dissolution of feldspars by heterotrophic bacteria of Bacillus species. Ceramics-silikaty, 47, 20—26 (2003).
 
20. Toro M., Azcon R., Barea J. Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability ((sup32)P) and nutrient cycling. Appl. Environ. Microbiol., 63, 4408—4412 (1997).
 
21. Vandevivere P., Kirchman D. L. Attachment stimulates exopolysaccharide synthesis by a bacterium. Appl. Environ. Microbiol., 59, 3280—3286 (1993).
 
22. Van Loosdrecht M. C. M., Lyklema J., Norde W., et al. Influence of interfaces on microbial activity. Microbiol. Rev., 54, 75—87 (1990).
 
23. Yan L., Boyd K. G., Adams D. R., et al. Biofilm-specific cross-species induction of antimicrobial compounds in bacilli. Appl. Environ. Microbiol., 69, 3719—3727 (2003).
 
24. Zakharova I. Ya., Kosenko L. B. Methods of microbial polysaccharides study, 9—10 (Naukova dumka, Kyiv, 1982) [in Russian].