A cell model for the study of altered gravitation effects on human circadian rhythmicity

1Gamaleia, NF, 1Shishko, ED, 1Horobets, ОВ
1R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kosm. nauka tehnol. 2004, 10 ;(5-6):204-207
https://doi.org/10.15407/knit2004.05.204
Publication Language: Russian
Abstract: 
One of the most important problems associated with manned space flights is the alteration of normal temporal physiology in an astronaut's organism. This necessitates the investigation of space-environment effects on human chronobiological architectonics as a basis for elaboration of countermeasure strategies. We developed a new cell model. It is established that human blood lymphocytes contain a photosensitive circadian clock and the culture of those cells may be used for the study of the influence of space factors (especially, microgravity) on circadian rhythms in human organism.
References: 
1. Gamaleya N. F., Shishko E. D. The first evidence for the presence of light-responsive biological clock in human blood lymphocytes. Reports of the National Academy of Sciences of Ukraine, No. 6, 181 — 185 (2001) [in Russian].
 
2. Gamaleya N. F., Shishko E. D., Kosinskaya N. A., Chernyi A. P. Daily rhythms of the E-rosette-forming ability of human lymphocytes. Immunologiya, No. 1, 211—213 (1990) [in Russian].
 
3. Gamaleya N. F., Shishko E. D., Yanish G. V. The mechanism of laser biostimulation - facts and hypotheses. Izv. Akad. Nauk SSSR, Ser. Fiz., No. 3, 1027—1032 (1986) [in Russian].
 
4. Balsalobre A., Damiola F., Schibler U. A serum shock induced circadian gene expression in mammalian tissue culture cells. Cell., 93, 929—937 (1998).
 
5. Brown S. A., Schibler U. The ins and outs of circadian timekeeping. Curr. Opin. Genet. Dev., 9, 588— 594 (1999).
 
6. Cogoli A. The effect of hypogravity and hypergravity on cells of the immune system. J. Leukoc. Biol., 54 (3), 259—268 (1993).
 
7. Cogoli A., Cogoli-Greuter M. Activation and proliferation of lymphocytes and other mammalian cells in microgravity. Adv. Space Biol. Med., 6, 33—79 (1997).
 
8. Cogoli A., Tschopp A., Fuchs-Bislin P. Cell sensitivity to gravity. Science, 225 (4658), 228—230 (1984).
 
9. Cogoli-Greuter M., Meloni M. A., Sciola L., et al. Movement and interactions of leukocytes in microgravity. J. Biotechnol., 47 (2-3), 279—287 (1996).
 
10. Cooper D., Pride M. W., Brown E. I., et al. Suppression of antigen-specific lymphocyte activation in modeled microgravity. In Vitro Cell. Dev. Biol. Animal, 37 (2), 63— 65 (2001).
https://doi.org/10.1290/1071-2690(2001)037<0063:SOASLA>2.0.CO;2
 
11. Fuller C. A., Hoban-Higgins T. M., Klimovitsky V. Y., et al. Primate circadian rhythms during spaceflight: results from Cosmos 2044 and 2229. J. Appl. Physiol., 81 (1), 188—193 (1996).
 
12. Giebultowicz J. M. Molecular mechanism and cellular distribution of insect circadian clocks. Annu. Rev. Entomol., 45, 769—793 (2000).
 
13. Gundel A., Polyakov V. V., Zulley J. The alteration of human sleep and circadian rhythms during spaceflight. J. Sleep Res., 6 (1), 1—8 (1997).
 
14. Hashemi B. B., Penkala J. E., Vens C., et al. T cell activation responses are differentially regulated during clinorotation and in space flight. FASEB J., 13, 2071—2082 (1999).
 
15. Friemel H. (Ed.) Immunologische Arbeitsmethoden. (VEB Gustav Fischer Verlag, Jena, 1984).
 
16. Monk T. H., Buysse D. J., Billy B. D., et al. Sleep and circadian rhythms in four orbiting astronauts. J. Biol. Rhythms, 13 (3), 188—201 (1998).
 
17. Pellis N. R., Goodwin T. J., Risin D., et al. Changes in gravity inhibit lymphocyte locomotion through type I collagen. In Vitro Cell. Dev. Biol. Anim., 33 (5), 398—405 (1997).
 
18. Pennisi E. Multiple clocks keep time in fruit fly tissues. Science, 278, 1560—1561 (1997).
 
19. Plautz J. D., Kaneko M., Hall J. C., et al. Independent photoreceptive circadian clocks throughout Drosophila. Science, 278, 1632—1635 (1997).
 
20. Robinson E. L., Fuller C. A. Gravity and thermoregulation: metabolic changes and circadian rhythms. Pflugers Arch., 441 (2-3 Suppl), 32—38 (2000).
 
21. Stampi C. Sleep and circadian rhythms in space. J. Clin. Pharmacol., 34 (5), 518—534 (1994).
 
22. Vernikos J. Human physiology in space. Bioessays, 18 (12), 1029—1037 (1996).
 
23. Walther I., Pippia P., Meloni M. A., et al. Simulated microgravity inhibits the genetic expression of interleukin-2 and its receptor in mitogen-activated T lymphocytes. FEBS Lett., 436 (1), 115—118 (1998).
 
24. Whitmore D., Foulkes N. S., Sassone-Corsi P. Light acts directly on organs and cells in culture to set the vertebrate circadian clock. Nature, 404, 87—91 (2000).