The relation between characteristics of a single lithospheric source of acoustic-gravity waves and ionospheric response
Heading:
1Gotynyan, OE, 2Ivchenko, VM, 3Rapoport, Yu.G 1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine 2Taras Shevchenko National University of Kyiv, Physical Faculty, Kyiv, Ukraine 3Taras Shevchenko National University of Kyiv, Kyiv, Ukraine, Space Research Institute of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Kyiv, Ukraine |
Kosm. nauka tehnol. 2003, 9 ;(5-6):124-129 |
https://doi.org/10.15407/knit2003.05.124 |
Publication Language: Ukrainian |
Abstract: A three-dimensional numerical model of the acoustic-gravity wave (AGW) excitation from near ground lithospheric thermal source is developed. An ionospheric plasma linear response in F region of the ionosphere is obtained. A relationship between ionospheric response and AGW period is derived. A relationship between ionospheric response and geomagnetic field direction is investigated. The amplitude of relative electron concentration change in ionospheric plasma corresponds to AGW with typical periods of the order of 1 h. Such periods and absolute value of relative change of electron concentration in the ionospheric F layer coincide by the order of value with reported data of observations before earthquakes. The typical model value of relative electron concentration disturbances in the used model of ideal atmosphere is equal to several tens of percents at the F region altitudes.
|
Keywords: acoustic-gravity waves, ionospheric response, lithospheric source |
References:
1. Genkin L. G., Erukhimov L. M., Myasnikov E. N., Shvarts M. M. Formation and ascent of nonisothermal ionospheric and chromospheric “bubbles”. Izv. Vuzov. Radiofizika, 30, 567—577 (1987) [in Russian].
https://doi.org/10.1007/BF01035291
https://doi.org/10.1007/BF01035291
2. Gershman B. N. Dynamics of the ionospheric plasma, 255 p. (Nauka, Moscow, 1974) [in Russian].
3. Gornyi V. I., Sal'man A. G., Tronin A. A., Shilin B. V. Outgoing infrared radiation of the earth as an indicator of seismic activity. Akademiia Nauk SSSR, Doklady, 301 (1), 67—69 (1988) [In Russian].
4. Gokhberg M. B., Nekrasov A. K., Shalimov S. L. On influence of greenhouse gases instable injection to the ionosphere in seismic active regions. Fizika Zemli, No. 8, 52—55 (1996) [in Russian].
5. Gokhberg M. B., Shalimov S. L. Lithosphere–ionosphere relation and its modeling. Russian Journal of Earth Sciences, 2 (1), 95—108 (2000) [in Russian].
https://doi.org/10.2205/2000ES000032
https://doi.org/10.2205/2000ES000032
6. Popov K. V., Liperovsky V. A., Alimov O. A. Modification of the Spectra of Variations in the Nighttime Ionospheric F 2 Layer Density during Preparation of Earthquakes. Fizika Zemli, No. 1, 93—96 (1996).
7. Toroshelidze T. I. Analysis of Aeronomy Problems by Radiation of the Upper Atmosphere, 114 p. (Metsniereba, Tbilisi, 1991) [in Russian].
8. Gladishev V. A., Fishkova L. M. Optical research of seismoac-tivity effects of the ionosphere. In: Hayakawa M., Fujinawa Y. (Eds) Electromagnetic phenomena related to earthquake prediction, 375—380 (TERRAPUB, Tokyo, 1994).
9. Gotynyan O. E., Ivchenko V. M., Rapoport Yu. G. Model of the internal gravity waves excited by lithospheric greenhouse effect gases. Kosm. nauka tehnol., 7 (Suppl. 2), 26—33 (2001).
10. Gotynyan O. E., Ivchenko V. M., Rapoport Yu. G., Parrot M. Ionospheric disturbances excited by the lithospheric gas source of acoustic gravity waves before earthquakes. Kosm. nauka tehnol., 9 (Suppl. 2), 89—105 (2003).
11. Grimalskiy V. V., Hayakawa M., Ivchenko V. N., et al. Penetration of electrostatic field from the lithosphere into the ionosphere and its effect on the D-region before earthquake. J. Atmos. Solar-Terr. Phys., 65, 391—407 (2003).
https://doi.org/10.1016/S1364-6826(02)00341-3
https://doi.org/10.1016/S1364-6826(02)00341-3
12. Grimalsky V. V., Kremenetsky I. A., Rapoport Yu. G. Excitation of electromagnetic waves in the lithosphere and their penetration into ionosphere and magnetosphere. J. Atmos. Electricity, 19 (2), 101 — 117 (1999).
13. Hines C. O. Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys., 38, 1441 — 1480 (1960).
https://doi.org/10.1139/p60-150
https://doi.org/10.1139/p60-150
14. Hooke W. H. Ionospheric irregularities produced by internal atmospheric gravity waves. J. Atmos. and Terr. Phys., 30, 795—823 (1968).
https://doi.org/10.1016/S0021-9169(68)80033-9
https://doi.org/10.1016/S0021-9169(68)80033-9
15. Huang C.-S., Sofko G. J., Keley M. C. Numerical simulation of midlatitude ionosoheric perturbations produced by gravity waves. J. Geophys. Res., 103A, 6977—6989 (1998).
https://doi.org/10.1029/97JA03176
https://doi.org/10.1029/97JA03176
16. Kendall P. C., Pickering W. M. Magnetoplazma diffusion at F2-region altitudes. Planet Space Sci., 15, 825 (1967).
https://doi.org/10.1016/0032-0633(67)90118-3
https://doi.org/10.1016/0032-0633(67)90118-3
17. Liperovsky V. A., Meister C. V., Popov K. V., et al. On the time scales of some seismo-ionospheric effects. In: Hayakawa M., Molchanov O. A. (Eds) Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, 325—327 (TERRAPUB, Tokyo, 2002).
18. Meister C. V., Liperovskaya E. V., Molchanov O. A., et al. To the question of spatial scales of seismo-ionospheric effects. In: Hayakawa M., Molchanov O. A. (Eds) Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, 3329—3331(TERRAPUB, Tokyo, 2002).
19. Molchanov O. A., Hayakawa M., Rafalsky V. A. Penetration characteristics of electromagnetic emission from an underground seismic source into the atmosphere, the ionosphere, and magnetosphere. J. Geophys. Res., 100, 1691 — 1712 (1995).
https://doi.org/10.1029/94JA02524
https://doi.org/10.1029/94JA02524
20. Parrot M. Statistical studies with satellite observations of seismogenic effects. In: Hayakawa M. (Ed.) Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, 685— 695 (TERRAPUB, Tokyo, 1999).
21. Porter H. S., Silverman S. M., Tuan T. F. On the Behavior of Airglow Under the Influence of Gravity Waves. J. Geophys. Res., 79 (25), 3831—3833 (1974).
https://doi.org/10.1029/JA079i025p03827
https://doi.org/10.1029/JA079i025p03827
22. Tronin A. A. Satellite thermal survey application for earthquake prediction. In: Hayakawa M. (Ed.) Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, 717—746 (TERRAPUB, Tokyo, 1999).