Problems of solar dynamo-cycle
Heading:
1Kryvodubskyi, VN 1Astronomical Observatory of the Taras Shevchenko National University of Kyiv, Ukraine |
Kosm. nauka tehnol. 2003, 9 ;(5-6):147-152 |
https://doi.org/10.15407/knit2003.05.147 |
Publication Language: Russian |
Abstract: The results of the researches devoted to overcoming some difficulties of the theory of solar turbulent dynamo are presented. Allowance for magnetic quenching of α -effect and newer helioseismic data extends the possibilities of αΩ -dynamo mechanism for interpretation of the observed regularities and anomalies of the solar magnetism. Inclusion of «magnetic antibuoyancy» effects to model of turbulent reconstruction of global magnetism enables us to impose restrictions on the magnitude of toroidal field excited by Ω -effect near the convection zone bottom. The period of Parker's dynamo-wave calculated in non-linear regime agrees to order of magnitude with observed duration of solar cycle. The use of recent data of helioseismic measurements of the inner rotation in dynamo-process leads to north-south asymmetry of the meridional field. At high-latitude regions of the convection zone, a quadrupolar mode is dominant in the net meridional field, which provides an explanation for the magnetic structure anomaly (apparent "monopole") of the global field observed near the maxima of solar cycles.
|
Keywords: solar cycles, solar dynamo-cycle, «monopole» |
References:
1. Vainshtein S. I. Magnetic fields in space, 240 p. (Nauka, Moscow, 1983) [in Russian].
2. Vainshtein S. I., Zeldovich Ia. B., Ruzmaikin A. A. The turbulent dynamo in astrophysics, 352 p. (Nauka, Moscow, 1980) [in Russian].
3. Kichatinov L. L., Pipin V. V. Buoyancy of the mean magnetic field in a turbulent medium. Pis'ma v Astronomicheskii Zhurnal, 19 (6), 557—563 (1993) [in Russian].
4. Kotov V. A., Haneychuk V. I., Tsap T. T. On the measurements of the magnetic disbalance of the Sun. Kinematika i Fizika Nebes. Tel, 18 (3), 205—216 (2002) [in Russian].
5. Krause F., Radler K.-H. Mean- Field Magnetohydrodynamics and Dynamo Theory, 320 p. (Mir, Moscow, 1984) [in Russian].
6. Krivodubskij V. N. Magnetic field transfer in the turbulent solar envelope. Astron. Zhurnal, 61 (2), 354—365 (1984) [in Russian].
7. Krivodubskij V. N. Intensity of sources of magnetic fields of the solar alpha-omega dynamo. Astron. Zhurnal, 61 (3), 540—548 (1984) [in Russian].
8. Krivodubskij V. N. The transfer of the large-scale solar magnetic field due to the inhomogeneity of matter in the convective zone. Pis'ma v Astron. Zhurnal, 13 (9), 803—810 (1987) [in Russian].
9. Krivodubskij V. N. Turbulent transfer of the large-scale magnetic field in the rotating convective zone of the sun. Astron. Zhurnal, 69 (4), 842— 849 (1992) [in Russian].
10. Krivodubskii V. N. Rotational anisotropy and magnetic quenching of gyrotropic turbulence in the solar convective zone. Astron. Zhurnal, 75 (1), 139—143 (1998) [in Russian].
11. Krivodubskii V. N. The structure of the global solar magnetic field excited by the turbulent dynamo mechanism. Astron. Zhurnal, 78 (9), 649—658 (2001) [in Russian].
https://doi.org/10.1134/1.1398923
https://doi.org/10.1134/1.1398923
12. Moffatt H. K. Magnetic field generation in electrically conducting fluids, 340 p. (Mir, Moscow, 1980) [in Russian].
13. Parker E. N. Cosmical magnetic fields. (Mir, Moscow, 1982) [in Russian].
14. Stix M. Dynamo theory and the solar cycle. In: Bumba V., Klechek I. (Eds) Problems of Solar Activity, 143—172 (Mir, Moscow, 1979) [in Russian].
15. Basu S. Seismology of the base of the solar convection zone. Mon. Notic. Roy. Astron. Soc., 288, 572—584 (1997).
https://doi.org/10.1093/mnras/288.3.572
https://doi.org/10.1093/mnras/288.3.572
16. Charbonneau P., Christensen-Dalsgaard J., Henning R., et al. Helioseismic constraints on the structure of solar tachocline. Astrophys. J., 527, 445—460 (1999).
https://doi.org/10.1086/308050
https://doi.org/10.1086/308050
17. Drobyshevskij E. M. Magnetic field transfer by two-dimensional convection and solar "semi-dynamo". Astrophys. Space Sci., 46 (1), 41—49 (1977).
https://doi.org/10.1007/BF00643752
https://doi.org/10.1007/BF00643752
18. Howard R. Studies of solar magnetic fields. I. The average field strengths. Solar Phys., 38, 283—299 (1974).
https://doi.org/10.1007/BF00155067
https://doi.org/10.1007/BF00155067
19. Howe R., Christensen-Dalsgaard J., Hill F., et al. Dynamic variations at the base of the solar convection zone. Science, 287, 2456—2460 (2000).
https://doi.org/10.1126/science.287.5462.2456
https://doi.org/10.1126/science.287.5462.2456
20. Howe R., Christensen-Dalsgaard J., Hill F., et al. Deeply penetrating banded zonal flows in the solar convection zone. Astrophys. J., 533, L163—L166 (2000).
https://doi.org/10.1086/312623
https://doi.org/10.1086/312623
21. Kryvodubskyj V. N., Rüdiger G., Kitchatinov L. L. Non-linear diamagnetic transfer and magnetic buoyancy of large-scale magnetic field in the convective zone of the Sun. Visnyk Kyiv. Univ. Astronomija, No. 33, 55—58 (1994).
22. Ossendrijver M. The solar dynamo. Astron. and Astrophys. Rev., 11 (4), 287—367 (2003).
https://doi.org/10.1007/s00159-003-0019-3
https://doi.org/10.1007/s00159-003-0019-3
23. Roxburgh I. W. Convection and solar structure. Astron. and Astrophys., 65, 281—285 (1978).
24. Rüdiger G., Kitchatinov L. L. Alpha-effect and alpha-quenching. Astron. and Astrophys., 269, 581—588 (1993).
25. Spiegel E. A., Zahn J.-P. The solar tachocline. Astron. and Astrophys., 265, 106—114 (1992).
26. Stix M. The Sun, 200 p. (Verlag, Berlin, 1989).