Generation of Langmuir waves in a magnetized plasma with low-frequency turbulence

1Burinskaya, TM, 2Rauch, JL, 1Mogilevsky, MM
1Space Research Institute of the Russian AS, Moscow, Russia
2LPCE/CNRS, ЗА Avenue de la Recherche Scientifique, Orleans, France
Kosm. nauka tehnol. 2002, 8 ;(Supplement2):082-088
https://doi.org/10.15407/knit2002.02s.082
Publication Language: Russian
Abstract: 
In the framework of the quasilinear statistical approximation, equations are derived that describe the dynamics of the formation of the spectra of Langmuir oscillations in a magnetized collisionless plasma with low-frequency turbulence. The equations obtained take into account the scattering of waves excited by an electron beam against a given background of plasma density fluctuations both at small and large angles. Owing to the scattering of Langmuir waves, the vibrational energy is redistributed in phase space and spectra of a characteristic form are formed. Numerical calculations carried out with plasma parameters characteristic of the polar cap of the Earth’s magnetosphere make it possible to explain the generation of small-scale bursts of Langmuir oscillations recorded onboard the INTERBALL-2 satellite during overflights in this region.
References: 

1. Lin R. P., Levedahl W. K., Lotko W., et al. Evidence for parametric decay of Langmuir waves in solar type III radio burst. Astrophys. J., 308, 954 (1986).
https://doi.org//10.1086/164563
2. Gurnett D. A., Hospodarsky G. B., et al. Fine structure of Langmuir waves produced by a solar electron event. J. Geophys. Res., 98, 5631 (1993).
https://doi.org//10.1029/92JA02838
3. McFadden J. P., Carlson C. W., Boehm M. H. High frequency waves generated by auroral electrons. J. Geophys. Res., 91, 12079 (1986).
https://doi.org//10.1029/JA091iA11p12079
4. Stasievicz K., Holback B., Krasnoselskikh V., et al. Parametric instabilities of Langmuir waves observed by Freja. J. Geophys. Res., 101, 21.515 (1996).
https://doi.org//10.1029/96JA01747
5. Bonnel J., Kintner P., Wahlund J.-E., et al. Modulated Langmuir waves: Observations from Freja and SCIFER. J. Geophys. Res., 102, 17.233 (1997).
https://doi.org//10.1029/97JA01499
6. Burinskaya T. M., Rusanov A. A., Mogilevsky M. M. Small-Scale Bursts of the Langmuir Oscillations in the Polar Cap. Kosmicheskie Issledovaniia, 38 (5), 507 (2000) [in Russian].
7. Mogilevsky M. M., Golyavin A. M., Aleksandrova T. V., et al. Measurements of Low-Frequency Electromagnetic Fields onboard the Auroral Probe Satellite in the INTERBALL Project: The NVK-ONCH Experiment. Kosmicheskie Issledovaniia, 36 (6), 630 (1998) [in Russian].
8. Sauvaud J.-A., Barthe H., Aoustin C., et al. Measurement of the Suprathermal Plasma by the ION Spectrometric Complex on the INTERBALL-2 Satellite (Auroral Probe) . Kosmicheskie Issledovaniia, 36 (1), 63 (1998) [in Russian].
9. Goldman M. V., and DuBois D. F. Beam-plasma instability in the presence of low-frequency turbulence. Phys. Fluids, 25, 1062 (1982).
https://doi.org//10.1063/1.863839
10. Holmgren G., and Kintner P. M. Experimental evidence of widespread regions of small-scale plasma irregularities in the magnetosphere. J. Geophys. Res., 95, 6015 (1990).
https://doi.org//10.1029/JA095iA05p06015